Discretization of the Multiscale SemiconductorBoltzmann Equation by DiffusiveRelaxation Schemes

نویسندگان

  • Shi Jin
  • Lorenzo Pareschi
چکیده

In this paper we derive diffusive relaxation schemes for the linear semiconductor Boltzmann equation that work in both the kinetic and diffusive regimes. Similar to our earlier approach for multiscale transport equations, we use the evenand oddparity formulation of the kinetic equation, and then reformulate it into the diffusive relaxation system (DRS). In order to handle the implicit anisotropic collision term efficiently, we utilize a suitable power series expansion based on the Wild sum, which yields a time discretization uniformly stable with any desired order of accuracy, yet is explicitly solvable with the correct drift-diffusion limit. The velocity discretization is done with the Gauss–Hermite quadrature rule equivalent to a moment expansion method. Asymptotic analysis and numerical experiments show that the schemes have the usual advantages of a diffusive relaxation scheme for multiscale transport equations and are asymptotic-preserving. c © 2000 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Accuracy of Hybrid Lattice Boltzmann/Finite Difference Schemes for Reaction-Diffusion Systems

In this article we construct a hybrid model by spatially coupling a lattice Boltzmann model (LBM) to a finite difference discretization of the partial differential equation (PDE) for reaction-diffusion systems. Because the LBM has more variables (the particle distribution functions) than the PDE (only the particle density), we have a one-to-many mapping problem from the PDE to the LBM domain at...

متن کامل

Multiscale Particle-in-Cell methods and comparisons for the long-time two-dimensional Vlasov-Poisson equation with strong magnetic field

We applied different kinds of multiscale methods to numerically study the long-time Vlasov-Poisson equation with a strong magnetic field. The multiscale methods include an asymptotic preserving Runge-Kutta scheme, an exponential time discretization scheme, stroboscopic averaging method and a uniformly accurate two-scale formulation. We briefly review these methods and then adapt them to solve t...

متن کامل

An efficient nonstandard numerical method with positivity preserving property

Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001